
Python Notes

PGDCA

Unit – II

Jiwaji University

Year – 2019 – 2020

Python OOPs Concepts
Like other general purpose languages, python is also an object-oriented language since its

beginning. Python is an object-oriented programming language. It allows us to develop

applications using an Object Oriented approach. In Python, we can easily create and use classes

and objects.

Major principles of object-oriented programming system are given below.

o Object

o Class

o Method

o Inheritance

o Polymorphism

o Data Abstraction

o Encapsulation

Object
The object is an entity that has state and behavior. It may be any real-world object like the mouse,

keyboard, chair, table, pen, etc.

Everything in Python is an object, and almost everything has attributes and methods. All functions

have a built-in attribute __doc__, which returns the doc string defined in the function source code.

Class
The class can be defined as a collection of objects. It is a logical entity that has some specific

attributes and methods. For example: if you have an employee class then it should contain an

attribute and method, i.e. an email id, name, age, salary, etc.

Syntax

1. class ClassName:

2. <statement-1>

3. .

4. .

5. <statement-N>

Method
The method is a function that is associated with an object. In Python, a method is not unique to

class instances. Any object type can have methods.

Inheritance

Inheritance is the most important aspect of object-oriented programming which simulates the real

world concept of inheritance. It specifies that the child object acquires all the properties and

behaviors of the parent object.

By using inheritance, we can create a class which uses all the properties and behavior of another

class. The new class is known as a derived class or child class, and the one whose properties are

acquired is known as a base class or parent class.

It provides re-usability of the code.

Polymorphism
Polymorphism contains two words "poly" and "morphs". Poly means many and Morphs means

form, shape. By polymorphism, we understand that one task can be performed in different ways.

For example You have a class animal, and all animals speak. But they speak differently. Here, the

"speak" behavior is polymorphic in the sense and depends on the animal. So, the abstract "animal"

concept does not actually "speak", but specific animals (like dogs and cats) have a concrete

implementation of the action "speak".

Encapsulation
Encapsulation is also an important aspect of object-oriented programming. It is used to restrict

access to methods and variables. In encapsulation, code and data are wrapped together within a

single unit from being modified by accident.

Data Abstraction
Data abstraction and encapsulation both are often used as synonyms. Both are nearly synonym

because data abstraction is achieved through encapsulation.

Abstraction is used to hide internal details and show only functionalities. Abstracting something

means to give names to things so that the name captures the core of what a function or a whole

program does.

Object-oriented vs Procedure-oriented Programming languages

Index Object-oriented Programming Procedural Programming

1. Object-oriented programming is the

problem-solving approach and used

where computation is done by using

objects.

Procedural programming uses a list

of instructions to do computation

step by step.

2. It makes the development and

maintenance easier.

In procedural programming, It is not

easy to maintain the codes when the

project becomes lengthy.

3. It simulates the real world entity. So

real-world problems can be easily

solved through oops.

It doesn't simulate the real world. It

works on step by step instructions

divided into small parts called

functions.

4. It provides data hiding. So it is more

secure than procedural languages.

You cannot access private data from

anywhere.

Procedural language doesn't provide

any proper way for data binding, so

it is less secure.

5. Example of object-oriented

programming languages is C++,

Java, .Net, Python, C#, etc.

Example of procedural languages

are: C, Fortran, Pascal, VB etc.

Python Class and Objects
As we have already discussed, a class is a virtual entity and can be seen as a blueprint of an object.

The class came into existence when it instantiated. Let's understand it by an example.

Suppose a class is a prototype of a building. A building contains all the details about the floor,

doors, windows, etc. we can make as many buildings as we want, based on these details. Hence,

the building can be seen as a class, and we can create as many objects of this class.

On the other hand, the object is the instance of a class. The process of creating an object can be

called as instantiation.

In this section of the tutorial, we will discuss creating classes and objects in python. We will also

talk about how an attribute is accessed by using the class object.

Creating classes in python
In python, a class can be created by using the keyword class followed by the class name. The

syntax to create a class is given below.

Syntax

1. class ClassName:

2. #statement_suite

In python, we must notice that each class is associated with a documentation string which can be

accessed by using <class-name>.__doc__. A class contains a statement suite including fields,

constructor, function, etc. definition.

Consider the following example to create a class Employee which contains two fields as Employee

id, and name.

The class also contains a function display() which is used to display the information of the

Employee.

Example

1. class Employee:

2. id = 10;

3. name = "ayush"

4. def display (self):

5. print(self.id,self.name)

Here, the self is used as a reference variable which refers to the current class object. It is always

the first argument in the function definition. However, using self is optional in the function call.

Creating an instance of the class
A class needs to be instantiated if we want to use the class attributes in another class or method. A

class can be instantiated by calling the class using the class name.

The syntax to create the instance of the class is given below.

1. <object-name> = <class-name>(<arguments>)

The following example creates the instance of the class Employee defined in the above example.

Example

1. class Employee:

2. id = 10;

3. name = "John"

4. def display (self):

5. print("ID: %d \nName: %s"%(self.id,self.name))

6. emp = Employee()

7. emp.display()

Output:
ID: 10

Name: ayush

Python Constructor
A constructor is a special type of method (function) which is used to initialize the instance

members of the class.

Constructors can be of two types.

1. Parameterized Constructor

2. Non-parameterized Constructor

Constructor definition is executed when we create the object of this class. Constructors also verify

that there are enough resources for the object to perform any start-up task.

Creating the constructor in python
In python, the method __init__ simulates the constructor of the class. This method is called when

the class is instantiated. We can pass any number of arguments at the time of creating the class

object, depending upon __init__ definition. It is mostly used to initialize the class attributes. Every

class must have a constructor, even if it simply relies on the default constructor.

Consider the following example to initialize the Employee class attributes.

Example

1. class Employee:

2. def __init__(self,name,id):

3. self.id = id;

4. self.name = name;

5. def display (self):

6. print("ID: %d \nName: %s"%(self.id,self.name))

7. emp1 = Employee("John",101)

8. emp2 = Employee("David",102)

9.

10. #accessing display() method to print employee 1 information

11.

12. emp1.display();

13.

14. #accessing display() method to print employee 2 information

15. emp2.display();

Output:
ID: 101

Name: John

ID: 102

Name: David

Example: Counting the number of objects of a class

1. class Student:

2. count = 0

3. def __init__(self):

4. Student.count = Student.count + 1

5. s1=Student()

6. s2=Student()

7. s3=Student()

8. print("The number of students:",Student.count)

Output:
The number of students: 3

Python Non-Parameterized Constructor Example

1. class Student:

2. # Constructor - non parameterized

3. def __init__(self):

4. print("This is non parametrized constructor")

5. def show(self,name):

6. print("Hello",name)

7. student = Student()

8. student.show("John")

Output:

This is non parametrized constructor

Hello John

Python Parameterized Constructor Example

1. class Student:

2. # Constructor - parameterized

3. def __init__(self, name):

4. print("This is parametrized constructor")

5. self.name = name

6. def show(self):

7. print("Hello",self.name)

8. student = Student("John")

9. student.show()

Output:
This is parametrized constructor

Hello John

Python In-built class functions
The in-built functions defined in the class are described in the following table.

SN Function Description

1 getattr(obj,name,default) It is used to access the attribute of the object.

2 setattr(obj, name,value) It is used to set a particular value to the specific

attribute of an object.

3 delattr(obj, name) It is used to delete a specific attribute.

4 hasattr(obj, name) It returns true if the object contains some specific

attribute.

Example

1. class Student:

2. def __init__(self,name,id,age):

3. self.name = name;

4. self.id = id;

5. self.age = age

6.

7. #creates the object of the class Student

8. s = Student("John",101,22)

9.

10. #prints the attribute name of the object s

11. print(getattr(s,'name'))

12.

13. # reset the value of attribute age to 23

14. setattr(s,"age",23)

15.

16. # prints the modified value of age

17. print(getattr(s,'age'))

18.

19. # prints true if the student contains the attribute with name id

20.

21. print(hasattr(s,'id'))

22. # deletes the attribute age

23. delattr(s,'age')

24.

25. # this will give an error since the attribute age has been deleted

26. print(s.age)

Output:
John

23

True

AttributeError: 'Student' object has no attribute 'age'

Built-in class attributes
Along with the other attributes, a python class also contains some built-in class attributes which

provide information about the class.

The built-in class attributes are given in the below table.

SN Attribute Description

1 __dict__ It provides the dictionary containing the information about the

class namespace.

2 __doc__ It contains a string which has the class documentation

3 __name__ It is used to access the class name.

4 __module__ It is used to access the module in which, this class is defined.

5 __bases__ It contains a tuple including all base classes.

Example

1. class Student:

2. def __init__(self,name,id,age):

3. self.name = name;

4. self.id = id;

5. self.age = age

6. def display_details(self):

7. print("Name:%s, ID:%d, age:%d"%(self.name,self.id))

8. s = Student("John",101,22)

9. print(s.__doc__)

10. print(s.__dict__)

11. print(s.__module__)

Output:
None

{'name': 'John', 'id': 101, 'age': 22}

__main__

Python Inheritance
Inheritance is an important aspect of the object-oriented paradigm. Inheritance provides code

reusability to the program because we can use an existing class to create a new class instead of

creating it from scratch.

In inheritance, the child class acquires the properties and can access all the data members and

functions defined in the parent class. A child class can also provide its specific implementation to

the functions of the parent class. In this section of the tutorial, we will discuss inheritance in detail.

In python, a derived class can inherit base class by just mentioning the base in the bracket after the

derived class name. Consider the following syntax to inherit a base class into the derived class.

Syntax

1. class derived-class(base class):

2. <class-suite>

A class can inherit multiple classes by mentioning all of them inside the bracket. Consider the

following syntax.

Syntax

1. class derive-class(<base class 1>, <base class 2>, <base class n>):

2. <class - suite>

Example 1

1. class Animal:

2. def speak(self):

3. print("Animal Speaking")

4. #child class Dog inherits the base class Animal

5. class Dog(Animal):

6. def bark(self):

7. print("dog barking")

8. d = Dog()

9. d.bark()

10. d.speak()

Output:
dog barking

Animal Speaking

Python Multi-Level inheritance
Multi-Level inheritance is possible in python like other object-oriented languages. Multi-level

inheritance is archived when a derived class inherits another derived class. There is no limit on the

number of levels up to which, the multi-level inheritance is archived in python.

The syntax of multi-level inheritance is given below.

Syntax

1. class class1:

2. <class-suite>

3. class class2(class1):

4. <class suite>

5. class class3(class2):

6. <class suite>

7. .

8. .

Example

1. class Animal:

2. def speak(self):

3. print("Animal Speaking")

4. #The child class Dog inherits the base class Animal

5. class Dog(Animal):

6. def bark(self):

7. print("dog barking")

8. #The child class Dogchild inherits another child class Dog

9. class DogChild(Dog):

10. def eat(self):

11. print("Eating bread...")

12. d = DogChild()

13. d.bark()

14. d.speak()

15. d.eat()

Output:
dog barking

Animal Speaking

Eating bread...

Python Multiple inheritance
Python provides us the flexibility to inherit multiple base classes in the child class.

The syntax to perform multiple inheritance is given below.

Syntax

1. class Base1:

2. <class-suite>

3.

4. class Base2:

5. <class-suite>

6. .

7. .

8. .

9. class BaseN:

10. <class-suite>

11.

12. class Derived(Base1, Base2, BaseN):

13. <class-suite>

Example

1. class Calculation1:

2. def Summation(self,a,b):

3. return a+b;

4. class Calculation2:

5. def Multiplication(self,a,b):

6. return a*b;

7. class Derived(Calculation1,Calculation2):

8. def Divide(self,a,b):

9. return a/b;

10. d = Derived()

11. print(d.Summation(10,20))

12. print(d.Multiplication(10,20))

13. print(d.Divide(10,20))

Output:
30

200

0.5

The issubclass(sub,sup) method
The issubclass(sub, sup) method is used to check the relationships between the specified classes.

It returns true if the first class is the subclass of the second class, and false otherwise.

Consider the following example.

Example

1. class Calculation1:

2. def Summation(self,a,b):

3. return a+b;

4. class Calculation2:

5. def Multiplication(self,a,b):

6. return a*b;

7. class Derived(Calculation1,Calculation2):

8. def Divide(self,a,b):

9. return a/b;

10. d = Derived()

11. print(issubclass(Derived,Calculation2))

12. print(issubclass(Calculation1,Calculation2))

Output:
True

False

The isinstance (obj, class) method
The isinstance() method is used to check the relationship between the objects and classes. It returns

true if the first parameter, i.e., obj is the instance of the second parameter, i.e., class.

Consider the following example.

Example

1. class Calculation1:

2. def Summation(self,a,b):

3. return a+b;

4. class Calculation2:

5. def Multiplication(self,a,b):

6. return a*b;

7. class Derived(Calculation1,Calculation2):

8. def Divide(self,a,b):

9. return a/b;

10. d = Derived()

11. print(isinstance(d,Derived))

Output:
True

Method Overriding
We can provide some specific implementation of the parent class method in our child class. When

the parent class method is defined in the child class with some specific implementation, then the

concept is called method overriding. We may need to perform method overriding in the scenario

where the different definition of a parent class method is needed in the child class.

Consider the following example to perform method overriding in python.

Example

1. class Animal:

2. def speak(self):

3. print("speaking")

4. class Dog(Animal):

5. def speak(self):

6. print("Barking")

7. d = Dog()

8. d.speak()

Output:
Barking

Real Life Example of method overriding

1. class Bank:

2. def getroi(self):

3. return 10;

4. class SBI(Bank):

5. def getroi(self):

6. return 7;

7.

8. class ICICI(Bank):

9. def getroi(self):

10. return 8;

11. b1 = Bank()

12. b2 = SBI()

13. b3 = ICICI()

14. print("Bank Rate of interest:",b1.getroi());

15. print("SBI Rate of interest:",b2.getroi());

16. print("ICICI Rate of interest:",b3.getroi());

Output:
Bank Rate of interest: 10

SBI Rate of interest: 7

ICICI Rate of interest: 8

Data abstraction in python
Abstraction is an important aspect of object-oriented programming. In python, we can also perform

data hiding by adding the double underscore (___) as a prefix to the attribute which is to be hidden.

After this, the attribute will not be visible outside of the class through the object.

Consider the following example.

Example

1. class Employee:

2. __count = 0;

3. def __init__(self):

4. Employee.__count = Employee.__count+1

5. def display(self):

6. print("The number of employees",Employee.__count)

7. emp = Employee()

8. emp2 = Employee()

9. try:

10. print(emp.__count)

11. finally:

12. emp.display()

Output:
The number of employees 2

AttributeError: 'Employee' object has no attribute '__count'

Environment Setup
To build the real world applications, connecting with the databases is the necessity for the

programming languages. However, python allows us to connect our application to the databases

like MySQL, SQLite, MongoDB, and many others.

In this section of the tutorial, we will discuss Python - MySQL connectivity, and we will perform

the database operations in python. We will also cover the Python connectivity with the databases

like MongoDB and SQLite later in this tutorial.

Install mysql.connector
To connect the python application with the MySQL database, we must import the mysql.connector

module in the program.

The mysql.connector is not a built-in module that comes with the python installation. We need to

install it to get it working.

Execute the following command to install it using pip installer.

1. > python -m pip install mysql-connector

Or follow the following steps.
1. Click the link:

https://files.pythonhosted.org/packages/8f/6d/fb8ebcbbaee68b172ce3dfd08c7b8660d09f91d8d54

11298bcacbd309f96/mysql-connector-python-8.0.13.tar.gz to download the source code.

2. Extract the archived file.

3. Open the terminal (CMD for windows) and change the present working directory to the source

code directory.

1. $ cd mysql-connector-python-8.0.13/

4. Run the file named setup.py with python (python3 in case you have also installed python 2) with

the parameter build.

1. $ python setup.py build

5. Run the following command to install the mysql-connector.

1. $ python setup.py install

This will take a bit of time to install mysql-connector for python. We can verify the installation

once the process gets over by importing mysql-connector on the python shell.

https://files.pythonhosted.org/packages/8f/6d/fb8ebcbbaee68b172ce3dfd08c7b8660d09f91d8d5411298bcacbd309f96/mysql-connector-python-8.0.13.tar.gz
https://files.pythonhosted.org/packages/8f/6d/fb8ebcbbaee68b172ce3dfd08c7b8660d09f91d8d5411298bcacbd309f96/mysql-connector-python-8.0.13.tar.gz

Hence, we have successfully installed mysql-connector for python on our system.

